QForm UK Sheet Metal Forming Introductory

course

Introduction	 Introductory information Overview of available options Goals of the course
Demonstration of initial data setting	 Structure of the source data panel: workpiece parameters, parameters of tools, etc. Interface overview
Analysis of results	 Result fields, graphs, dimensioning Saving images/animations Exporting results
Geometry preparation	 Requirements for geometry Direct import from step files Parametric geometry, creation of quad mesh
Database	EquipmentMaterialsLubricants
Postprocessor capabilities for analyzing results	 Tracked objects: points, lines, line arrays and arrays of points Standard postprocessing subroutines: Forming Limit Diagram, Thickness, etc.
Additional features	 Adjustment of simulation parameters: calculation step, volume constancy, accounting for rotational motion, etc. Control of finite element meshes of workpiece and tools

Objectives:

- Introduction to the possibilities of program application
- Learning the interface and tools for analyzing results
- Mastering the principles of preparing tasks for simulation and the necessary input data
- Gaining skills of preparation of initial data and simulation sheet metal forming processes in the specialized QForm UK module

Schedule

- 1. Introduction (presentation)
 - Introductory presentation. Overview of available options.
 - User manual (Help) structure.
 - Goal of the introductory course.
- 2. Possibilities of sheet metal forming simulation in QForm UK 11
 - An overview of the available possibilities for sheet metal forming simulation.
- 3. Preparing the 3D_strip bending training example (presentation and hands-on session)
 - Source data panel: Project, Operation, Geometry, Workpiece parameters, Tool parameters, Stop conditions, Boundary conditions, Blows, Simulation parameters.
 - Demonstration of the preparation of source data for simulation.
- 4. Interface overview (presentation)
 - Main menu, toolbar, result playback panel, calculation control panel, simulation log and RMB menu.
- 5. Tools for analyzing results (presentation)
 - Fields and scale of results.
 - Graphs, sections and measurements.
 - Save animations/images and export results.

Break/Lunch (~ 30 minutes)

- 6. Recommendations for the geometry preparation (presentation)
 - Requirements for geometry. Direct import of geometry from step files.
 - Creation of hexahedral workpiece mesh.
- 7. Preparing the 3D_Nakajima training example (hands-on session)
 - Setting the material model.
 - Additional features for postprocessing analysis of simulation results: Forming Limit Diagram.
- 8. Overview of databases (presentation)
 - Equipment, Lubricants, Deformed materials.

9*. Preparing the 3D_double-action drawing training example (hands-on session)

(additional example; optional)

- Simulation of a chain of operations.
- Application of the trimming surface.
- Creation of a model of the material and equipment.